Saturday, 16 December 2017

Autoregressive moving average model matlab code


Para gerar modelo Autoregressivo, temos o comando aryule () e também podemos usar o modelo AR de filtrosEstimating. Mas como gerar modelo MA Por exemplo, alguém pode mostrar como gerar o modelo MA (20), não consegui encontrar nenhuma técnica apropriada para fazê-lo. O ruído é gerado a partir de um mapa não-linear. Assim, o modelo MA irá regredir em termos de epsilon. Q1: Será extremamente útil se o código e a forma funcional de um modelo MA forem mostrados de preferência MA (20) usando o modelo de ruído acima. Q2: É assim que eu gerei um AR (20) usando barulho aleatório, mas não sei como usar a equação acima como o ruído em vez de usar rand para MA e AR solicitado 15 de agosto 14 às 17:30 Meu problema é o uso de filtro. Não estou familiarizado com o conceito de função de transferência, mas você mencionou que o numerador B39s são os coeficientes MA, portanto o B deve ser os 20 elementos e não os A39s. Em seguida, let39s dizem que o modelo tem uma intercepção de 0,5, você pode mostrar com o código como eu posso criar um modelo de MA com 0,5 intercepção (como mencionar a intercepção no filtro () e usando a entrada definida na minha pergunta, por favor Agradeça Você está para o link do filtro, que realmente eliminou as dúvidas sobre como usar o filtro. Ndash SKM 19 de agosto 14 às 16:36 No filtro quoty (b, a, X) filtra os dados no vetor X com o filtro descrito pelo vetor do coeficiente de numerador B e o vetor do coeficiente de denominação a. Se a (1) não for igual a 1, o filtro normaliza os coeficientes de filtro por a (1). Se a (1) é igual a 0, o filtro retorna um erro. quot (mathworkshelpmatlabreffilter. html) isto é A área do problema, como eu não entendo como especificar o a, b (coeficientes de filtro) quando há uma interceptação de dizer 0,5 ou intercepto de 1. Você pode mostrar um exemplo de MA com filtro e uma interceptação diferente de zero usando a entrada Que eu mencionei na pergunta ndash SKM 19 de agosto 14 às 17:45 Simulatio de migração agressiva N (Primeira Ordem) A Demonstração está configurada de modo que a mesma série aleatória de pontos seja usada independentemente das constantes e variáveis. No entanto, quando o botão quotrandomizequot é pressionado, uma nova série aleatória será gerada e usada. Manter a série aleatória idêntica permite ao usuário ver exatamente os efeitos na série ARMA de mudanças nas duas constantes. A constante é limitada a (-1,1) porque a divergência da série ARMA resulta quando. A Demonstração é apenas para um processo de primeiro orden. Os termos AR adicionais permitiriam gerar séries mais complexas, enquanto os termos MA adicionais aumentariam o alisamento. Para uma descrição detalhada dos processos ARMA, veja, por exemplo, G. Box, G. M. Jenkins e G. Reinsel, Time Series Analysis: Forecasting and Control. 3ª ed. Englewood Cliffs, NJ: Prentice-Hall, 1994. LINKS RELACIONADOS

No comments:

Post a Comment